Marknadens största urval
Snabb leverans

Böcker i Woodhead Publishing Biomateria-serien

Filter
Filter
Sortera efterSortera Serieföljd
  • av Deepak M. Kalaskar
    3 200,-

    3D Printing in Medicine, Second Edition examines the rapidly growing market of 3D-printed biomaterials and their clinical applications. With a particular focus on both commercial and premarket tools, the book looks at their applications within medicine and the future outlook for the field. The chapters are written by field experts actively engaged in educational and research activities at the top universities in the world. The earlier chapters cover the fundamentals of 3D printing, including topics such as materials and hardware. The later chapters go on to cover innovative applications within medicine such as computational analysis of 3D printed constructs, personalized 3D printing - including 3D cell and organ printing and the role of AI - with a subsequent look at the applications of high-resolution printing, 3D printing in diagnostics, drug development, 4D printing, and much more. This updated new edition features completely revised content, with additional new chapters covering organs-on-chips, bioprinting regulations and standards, intellectual properties, and socio-ethical implications of organs-on-demand.

  • av Oguzhan Gunduz, Cem Ustundag & Mustafa Sengor
    2 626,-

    Biomaterials for Neural Tissue Engineering covers a range of materials and technologies used for regenerating or repairing neural tissue. With a strong focus on biomaterials and scaffolds, the book examines the testing and evaluation pathway for in-vitro and in-vivo testing trials. This book introduces the reader to the fundamentals of the nervous system from a tissue engineering perspective and goes on to describe contemporary technologies used in the development of neural repair materials, as well as currently available biomaterials suitable for neural tissue repair and regeneration. This detailed reference is ideal for those who are new to using biomaterials in tissue engineering, particularly those interested in the nervous system, including academics and early career researchers in the fields of materials science, regenerative medicine, biomedical engineering and clinical sciences.

  • av Prashant Kesharwani
    2 626,-

    Nanomaterials for Photodynamic Therapy takes a unique approach to this area, with a key focus on the use of nanomaterials and nanocarriers for photodynamic therapy (PDT). The book introduces the history and mechanism of action behind PDT, covering the variety of sensitizers currently available. Subsequent chapters review existing and emerging nanomaterials for PDT, including hydrogel nanocomposites, fullerenes, quantum dots, polymeric micelles, and more. Challenges and translational aspects of PDT are also discussed, touching on the issues and hindrances of drug resistant cancers. The book bridges the gap between the physics and clinical aspects of PDT, offering a unique nanomaterials-focused perspective. This book will prove useful for materials scientists, biomedical engineers, electrical and optical engineers, and pharmaceutical scientists interested in cancer treatment.

  • av Masoud Mozafari
    3 296,-

  • av Sabu Thomas
    2 486,-

    Nanotechnology in Herbal Medicine: Applications and Innovations details how nanomaterials can be utilized to improve the therapeutic mechanisms and key properties of herbal drugs. This book guides the reader through the preparation, properties, applications, benefits and challenges of herbal nanoformulations, helping them solve fundamental and applied problems in the area of novel herbal medicines and drug delivery systems. Herbal drugs play a large role in traditional medicines, which are actively used by many cultures across the globe for the treatment of various illnesses and injuries. Despite their widespread use, herbal medicines may lead to possible health risks due to the lack of information on the chemical composition and permitted dosage.

  • av Kyusik Yun & Saravanan Govindaraju
    2 496,-

  • av Farshid Sefat, Masoud Mozafari & Gholamali Farzi
    4 136,-

  • av Sabu Thomas
    3 210,-

    Polymeric Materials for Biomedical Implants: Characterization, Properties, and Applications offers a comprehensive guide to the various polymers utilized in the development and application of biomedical implants. These materials possess unique properties which make them ideal for use in biomedical implants, including their high degree of flexibility, ease of fabrication, non-magnetic and radio transparent properties for medical imaging, and ease of engineering for biocompatibility. The book thoroughly reviews the properties, characterization and a broad range of applications of polymeric materials in biomedical implants, bringing all key information on this important topic together under a single reference. The book's chapters cover vital topics for the development of polymeric biomedical implants, including biomaterial-tissue interactions, mechanical and surface property requirements for different implants, as well as market and ethical issues. This will be a useful reference for academics and researchers working in materials science, biomedical engineering, regenerative medicine and pharmacology, as well as R&D groups developing biomedical implants.

  • av Rangasamy Jayakumar
    2 496,-

    Synthetic Polymers in Drug and Biotherapeutics Delivery covers new polymers that are fast replacing obsolete polymers in the field of drug delivery. Each chapter focuses on a specific polymer, detailing its design, synthesis, fabrication techniques, and applications in drug and biotherapeutics delivery. Synthetic polymers provide a unique set of opportunities in drug and biotherapeutics delivery due to their chemical versatility and tunable physicochemical properties. Such polymers can be formulated into nanoparticles, nanofibers, nanogels, microparticles, beads, hydrogels, and scaffolds to suit specific needs such as drug release rate, and biodegradation with low toxicity. This book covers new polymers that are fast replacing obsolete polymers in the field of drug delivery. Each chapter will focus on a specific polymer detailing its design, synthesis, fabrication techniques, and applications in drug and biotherapeutics delivery. This book provides a thorough review of the latest research in this rapidly changing field and would be of interest to materials scientists, pharmaceutical scientists, biomedical engineers, chemical engineers, and clinicians with an interest in materials development.

  • av Hamed Barabadi, Muthupandian Saravanan & Ebrahim Mostafavi
    2 496,-

    Bioengineered Nanomaterials for Wound Healing and Infection Control is a key reference for those working in the fields of materials science, pharmacy, nanotechnology, biomedical engineering and microbiology. Bioengineered nanomaterials have unique physicochemical properties which promote accelerated wound healing and treatment of infections. The biosynthesis of these nanomaterials also offers a clean, safe and renewable alternative to traditional nanomaterials, helping reduce environmental impact alongside antibacterial resistance.

  • av Amit Kumar Nayak, Md Saquib Hasnain & Tejraj M. Aminabhavi
    2 760,-

    Natural Biopolymers for Drug Delivery thoroughly details the properties, benefits and challenges of using these biomaterials in drug delivery, with a strong focus on biocompatibility and reduction of unwanted interactions. An extensive range of natural biopolymers are explored, such as cellulose, chitosan, casein, gelatin, cashew gum, and many more. Biocompatibility, toxicity and regulatory considerations are also thoroughly discussed, ensuring the reader is fully equipped for efficient biomaterials selection and utilization in drug delivery applications. This is a must-have reference for those working in the fields of materials science, biomedical engineering, pharmaceutical science and pharmacology, chemical engineering and clinical science.

  • av Saeid Kargozar
    3 716,-

    Biomaterials for Precision Cancer Medicine bridges the gap between materials science and medicine, providing insights into novel biomaterial-based treatments for cancer. The book describes the various smart biomaterial-based treatments available, reviewing how they can be designed to target specific tumor types, adapt to changes in the cell microenvironment and offer smart, personalized therapy for different cancer variants, especially those which are drug-resistant. The book provides a materials-focused look at precision cancer medicine, and is thus useful to materials scientists, biomedical engineers, and biomedical scientists - including cancer and genetic specialists - with an interest in alternative cancer therapies.

  • av Deepak Verma, Kheng-Lim Goh & Manunya Okhawilai
    3 066,-

    Bioresorbable Polymers and their Composites: Characterization and Fundamental Processing for Pharmaceutical and Medical Device Development provides a holistic view of these unique materials and their usage in a range of biomedical applications. The book is evenly divided between fundamentals, processing methods and modeling approaches, and includes detailed coverage of a variety of applications, such as drug delivery, medical devices and wound healing. Key aspects including biocompatibility, biodegradability and toxicology are also thoroughly covered, enabling the reader to be fully informed when fabricating and utilizing their selected bioresorbable polymer. This book is an interdisciplinary and important reference for researchers in the fields of materials science, biomedical engineering, pharmaceutical science and regenerative medicine, as well as R&D groups in the development of medical devices.

  • av Dipankar Chattopadhyay
    2 420,-

    Design, Characterization and Fabrication of Polymer Scaffolds for Tissue Engineering covers core elements of scaffold design, from properties and characterization of polymeric scaffolds to fabrication techniques and the structure-property relationship. Particular attention is given to the cell-scaffold interaction at the molecular level, helping the reader understand and adapt scaffold design to improve biocompatibility and function. The book goes on to discuss a range of tissue engineering applications for polymeric scaffolds, including bone, nerve, cardiac and fibroblast tissue engineering. This is an important, interdisciplinary work of relevance to materials scientists, polymer scientists, biomedical engineers, and those working regenerative medicine.

  • av Emmanuel Rotimi Sadiku
    2 356,-

    Hybrid Polymeric Systems for Biomedical Applications explores the development and utilization of hybrid polymeric systems for use in a range of biomedical applications. Hybrid systems combine the specialized properties of each polymer type to produce a more targeted material which is much more tightly aligned with the intended application and outcome. This book covers a broad selection of hybrid polymeric systems as well as a variety of key biomedical applications, including tissue engineering, drug delivery, wound healing, and more.

  • av Dipankar Chattopadhyay
    2 550,-

    Stimuli-Responsive Hydrogels for Ophthalmic Drug Delivery covers fundamental aspects in the preparation of polymeric in-situ, stimuli-responsive hydrogels, including properties, characterization, chemistry, and fabrication of these hydrogels. The book will help the reader select the most appropriate material and design for the desired application. The book goes on to review applications in ophthalmic drug delivery, covering in vitro and in vivo models, animal models, preclinical testing, patents, and more. This is a must-have reference for researchers and academics in the fields of materials science, biomaterials, pharmacology and polymer science, with an interest in clinical aspects of hydrogel design and application.

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.