Marknadens största urval
Snabb leverans

Böcker av Mahdi Karimi

Filter
Filter
Sortera efterSortera Populära
  • av Mahdi Karimi
    1 776,-

    The concept of smart drug delivery vehicles involves designing and preparing a nanostructure (or microstructure) that can be loaded with a cargo, this can be a therapeutic drug, a contrast agent for imaging, or a nucleic acid for gene therapy. The nanocarrier serves to protect the cargo from degradation by enzymes in the body, to enhance the solubility of insoluble drugs, to extend the circulation half-life, and to enhance its penetration and accumulation at the target site. Importantly, smart nanocarriers can be designed to be responsive to a specific stimulus, so that the cargo is only released or activated when desired. In this volume we cover smart nanocarriers that respond to externally applied stimuli that usually involve application of physical energy. This physical energy can be applied from outside the body and can either cause cargo release, or can activate the nanostructure to be cytotoxic, or both. The stimuli covered include light of various wavelengths (ultraviolet, visible or infrared), temperature (increased or decreased), magnetic fields (used to externally manipulate nanostructures and to activate them), ultrasound, and electrical and mechanical forces. Finally we discuss the issue of nanotoxicology and the future scope of the field.

  • av Mahdi Karimi
    1 776,-

    The concept of smart drug delivery vehicles involves designing and preparing a nanostructure (or microstructure) that can be loaded with a cargo. This can be a therapeutic drug, a contrast agent for imaging, or a nucleic acid for gene therapy. The nanocarrier serves to protect the cargo from degradation by enzymes in the body, to enhance the solubility of insoluble drugs, to extend the circulation half-life, and to enhance its penetration and accumulation at the target site. Importantly, smart nanocarriers can be designed to be responsive to a specific stimulus, so that the cargo is only released or activated when desired. In this volume we cover smart nanocarriers that respond to internal stimuli that are intrinsic to the target site. These stimuli are specific to the cell type, tissue or organ type, or to the disease state (cancer, infection, inflammation etc). pH-responsive nanostructures can be used for cargo release in acidic endosomal compartments, in the lower pH of tumors, and for specific oral delivery either to the stomach or intestine. Nanocarriers can be designed to be substrates of a wide-range of enzymes that are over-expressed at disease sites. Oxidation and reduction reactions can be taken advantage of in smart nanocarriers by judicious molecular design. Likewise, nanocarriers can be designed to respond to a range of specific biomolecules that may occur at the target site. In this volume we also cover dual and multi-responsive systems that combine stimuli that could be either internal or external.

  • av Mahdi Karimi
    1 726,-

    Recent important discoveries and developments in nanotechnology have had a remarkable and ever-increasing impact on many industries, especially materials science, pharmaceuticals, and biotechnology. Nanocarriers have been investigated for a wide variety of different medical applications. Some examples of these nanocarriers include polymersomes, liposomes, micelles and carbon-based nanomaterials. Within this book, the authors describe different features of carbon nanotubes (CNTs), survey the properties of both the multi-walled and single-walled varieties, and cover their applications in drug and gene delivery. In addition, the book explains the structure and properties of CNTs prepared by different method, and discussed their isolation and purification. The future of CNTs in the field of biomedical science will depend on minimizing their adverse effects by careful study of their structure and properties.

  • av Michael R Hamblin, Mahdi Karimi, Amir Ghasemi & m.fl.
    740,-

    Examines smart nanocarriers that respond to internal stimuli that are intrinsic to the target site. These stimuli are specific to the cell type, tissue or organ type, or to the disease state. pH-responsive nanostructures can be used for cargo release in acidic endosomal compartments, in the lower pH of tumors, and for specific oral delivery either to the stomach or intestine.

  • av Michael R. Hamblin, Mahdi Karimi, Amir Ghasemi & m.fl.
    740,-

    The concept of smart drug delivery vehicles involves designing and preparing a nanostructure (or microstructure) that can be loaded with a cargo, this can be a therapeutic drug, a contrast agent for imaging, or a nucleic acid for gene therapy. This volume covers smart nanocarriers that respond to externally applied stimuli that usually involve application of physical energy.

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.