Marknadens största urval
Snabb leverans

Böcker av William T (Trinity College Dublin Coffey

Filter
Filter
Sortera efterSortera Populära
  • av William T (Trinity College Dublin Coffey
    2 670,-

    Presenting in a coherent and accessible fashion current results in nanomagnetism, this book constitutes a comprehensive, rigorous and readable account, from first principles of the classical and quantum theories underlying the dynamics of magnetic nanoparticles subject to thermal fluctuations.Starting with the Larmor-like equation for a giant spin, both the stochastic (Langevin) equation of motion of the magnetization and the associated evolution (Fokker–Planck) equation for the distribution function of the magnetization orientations of ferromagnetic nanoparticles (classical spins) in a heat bath are developed along with their solution (using angular momentum theory) for arbitrary magnetocrystalline-Zeeman energy. Thus, observables such as the magnetization reversal time, relaxation functions, dynamic susceptibilities, etc. are calculated and compared with the predictions of classical escape rate theory including in the most general case spin-torque-transfer. Regarding quantum effects, which are based on the reduced spin density matrix evolution equation in Hilbert space as is described at length, they are comprehensively treated via the Wigner–Stratonovich formulation of the quantum mechanics of spins via their orientational quasi-probability distributions on a classically meaningful representation space. Here, as suggested by the relevant Weyl symbols, the latter is the configuration space of the polar angles. Hence, one is led, by mapping the reduced density matrix equation onto that space, to a master equation for the quasi-probability evolution akin to the Fokker–Planck equation which may be solved in a similar way. Thus, one may study in a classical-like manner the evolution of observables with spin number ranging from an elementary spin to molecular clusters to the classical limit, viz. a nanoparticle. The entire discussion hinges on the one-to-one correspondence between polarization operators in Hilbert space and the spherical harmonics allied to concepts of spin coherent states long familiar in quantum optics.Catering for the reader with only a passing knowledge of statistical and quantum mechanics, the book serves as an introductory text on a complicated subject where the literature is remarkably sparse.

  • av William T (Trinity College Dublin Coffey & Yuri P (Univ De Perpignan Via Domitia Kalmykov
    4 890,-

    Our original objective in writing this book was to demonstrate how the concept of the equation of motion of a Brownian particle — the Langevin equation or Newtonian-like evolution equation of the random phase space variables describing the motion — first formulated by Langevin in 1908 — so making him inter alia the founder of the subject of stochastic differential equations, may be extended to solve the nonlinear problems arising from the Brownian motion in a potential. Such problems appear under various guises in many diverse applications in physics, chemistry, biology, electrical engineering, etc. However, they have been invariably treated (following the original approach of Einstein and Smoluchowski) via the Fokker–Planck equation for the evolution of the probability density function in phase space. Thus the more simple direct dynamical approach of Langevin which we use and extend here, has been virtually ignored as far as the Brownian motion in a potential is concerned. In addition two other considerations have driven us to write this new edition of The Langevin Equation. First, more than five years have elapsed since the publication of the third edition and following many suggestions and comments of our colleagues and other interested readers, it became increasingly evident to us that the book should be revised in order to give a better presentation of the contents. In particular, several chapters appearing in the third edition have been rewritten so as to provide a more direct appeal to the particular community involved and at the same time to emphasize via a synergetic approach how seemingly unrelated physical problems all involving random noise may be described using virtually identical mathematical methods. Secondly, in that period many new and exciting developments have occurred in the application of the Langevin equation to Brownian motion. Consequently, in order to accommodate all these, a very large amount of new material has been added so as to present a comprehensive overview of the subject.

  • av William T (Trinity College Dublin Coffey
    2 966,-

    This volume is the second edition of the elementary book on the Langevin equation method for the solution of problems involving the Brownian motion in a potential, with emphasis on modern applications in the natural sciences, electrical engineering and other areas.

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.