Om Nonlinear Control and Analytical Mechanics
During the past decade we have had to confront a series of control design prob­ lems - involving, primarily, multibody electro-mechanical systems - in which nonlinearity plays an essential role. Fortunately, the geometric theory of non­ linear control system analysis progressed substantially during the 1980s and 90s, providing crucial conceptual tools that addressed many of our needs. However, as any control systems engineer can attest, issues of modeling, computation, and implementation quickly become the dominant concerns in practice. The prob­ lems of interest to us present unique challenges because of the need to build and manipulate complex mathematical models for both the plant and controller. As a result, along with colleagues and students, we set out to develop computer algebra tools to facilitate model building, nonlinear control system design, and code generation, the latter for both numerical simulation and real time con­ an outgrowth of that continuing effort. As trol implementation. This book is a result, the unique features of the book includes an integrated treatment of nonlinear control and analytical mechanics and a set of symbolic computing software tools for modeling and control system design. By simultaneously considering both mechanics and control we achieve a fuller appreciation of the underlying geometric ideas and constructions that are common to both. Control theory has had a fruitful association with analytical mechanics from its birth in the late 19th century.
Visa mer