Om A Course on Topological Vector Spaces
Initial topology, topological vector spaces, weak topology.- Convexity, separation theorems, locally convex spaces.- Polars, bipolar theorem, polar topologies.- The theorems of Tikhonov and Alaoglu-Bourbaki.- The theorem of Mackey-Arens.- Topologies on E'''', quasi-barrelled and barrelled spaces.- Reflexivity.- Completeness.- Locally convex final topology, topology of D(\Omega).- Precompact -- compact - complete.- The theorems of Banach--Dieudonne and Krein-Smulian.- The theorems of Eberlein--Grothendieck and Eberlein-Smulian.- The theorem of Krein.- Weakly compact sets in L_1(\mu).- \cB_0''''=\cB.- The theorem of Krein-Milman.- A The theorem of Hahn-Banach.- B Baire''s theorem and the uniform boundedness theorem.
Visa mer