Marknadens största urval
Snabb leverans

Applied Laser Spectroscopy for Nuclear Physics

- Isotope Shifts in the Mercury Isotopic Chain and Laser Ion Source Development

Om Applied Laser Spectroscopy for Nuclear Physics

This thesis explores two distinct applications of laser spectroscopy: the study of nuclear ground state properties, and element selective radioactive ion beam production. It also presents the methods and results of an investigation into isotope shifts in the mercury isotopic chain. These Resonance Ionization Laser Ion Source (RILIS) developments are detailed, together with an RILIS ionization scheme that allowed laser ionized ion beams of chromium, germanium, radium and tellurium to be generated at the Isotope Mass Separator On-Line (ISOLDE) facility. A combination of laser spectroscopy with decay spectroscopy and mass spectrometry unambiguously demonstrated a cessation of the extreme shape staggering first observed in the 1970s and revealed the characteristic kink at the crossing of the N=126 shell closure. A series of RILIS developments were required to facilitate this experiment, including mercury ¿ionization scheme¿ development and the coupling of the RILIS with an arc discharge ion source. Laser spectroscopy has since become a powerful tool for nuclear physics and the Resonance Ionization Laser Ion Source (RILIS), of the ISOLDE facility at CERN, is a prime example. Highlighting important advances in this field, the thesis offers a unique and revealing resource.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9783030738884
  • Format:
  • Inbunden
  • Sidor:
  • 129
  • Utgiven:
  • 27 September 2021
  • Utgåva:
  • 12021
  • Mått:
  • 155x235x0 mm.
  • Vikt:
  • 389 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 25 Oktober 2024

Beskrivning av Applied Laser Spectroscopy for Nuclear Physics

This thesis explores two distinct applications of laser spectroscopy: the study of nuclear ground state properties, and element selective radioactive ion beam production. It also presents the methods and results of an investigation into isotope shifts in the mercury isotopic chain. These Resonance Ionization Laser Ion Source (RILIS) developments are detailed, together with an RILIS ionization scheme that allowed laser ionized ion beams of chromium, germanium, radium and tellurium to be generated at the Isotope Mass Separator On-Line (ISOLDE) facility.
A combination of laser spectroscopy with decay spectroscopy and mass spectrometry unambiguously demonstrated a cessation of the extreme shape staggering first observed in the 1970s and revealed the characteristic kink at the crossing of the N=126 shell closure. A series of RILIS developments were required to facilitate this experiment, including mercury ¿ionization scheme¿ development and the coupling of the RILIS with an arc discharge ion source.

Laser spectroscopy has since become a powerful tool for nuclear physics and the Resonance Ionization Laser Ion Source (RILIS), of the ISOLDE facility at CERN, is a prime example. Highlighting important advances in this field, the thesis offers a unique and revealing resource.

Användarnas betyg av Applied Laser Spectroscopy for Nuclear Physics



Hitta liknande böcker
Boken Applied Laser Spectroscopy for Nuclear Physics finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.