Marknadens största urval
Snabb leverans

Asymptotic and Stationary Preserving Schemes for Kinetic and Hyperbolic Partial Differential Equations

Om Asymptotic and Stationary Preserving Schemes for Kinetic and Hyperbolic Partial Differential Equations

In this thesis, we are interested in numerically preserving stationary solutions of balance laws. We start by developing finite volume well-balanced schemes for the system of Euler equations and the system of Magnetohydrodynamics (MHD) equations with gravitational source term. Since fluid models and kinetic models are related, this leads us to investigate Asymptotic Preserving (AP) schemes for kinetic equations and their ability to preserve stationary solutions. In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9783958262102
  • Format:
  • Häftad
  • Sidor:
  • 152
  • Utgiven:
  • 9. maj 2023
  • Mått:
  • 170x10x240 mm.
  • Vikt:
  • 302 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 27. januari 2025
Förlängd ångerrätt till 31. januari 2025
  •  

    Kan ej levereras före jul.
    Köp nu och skriv ut ett presentkort

Beskrivning av Asymptotic and Stationary Preserving Schemes for Kinetic and Hyperbolic Partial Differential Equations

In this thesis, we are interested in numerically preserving stationary solutions of balance laws. We start by developing finite volume well-balanced schemes for the system of Euler equations and the system of Magnetohydrodynamics (MHD) equations with gravitational source term. Since fluid models and kinetic models are related, this leads us to investigate Asymptotic Preserving (AP) schemes for kinetic equations and their ability to preserve stationary solutions.
In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature.

Användarnas betyg av Asymptotic and Stationary Preserving Schemes for Kinetic and Hyperbolic Partial Differential Equations



Hitta liknande böcker
Boken Asymptotic and Stationary Preserving Schemes for Kinetic and Hyperbolic Partial Differential Equations finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.