Marknadens största urval
Snabb leverans

Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems

Om Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems

This book presents systematic overviews and bright insights into big data-driven intelligent fault diagnosis and prognosis for mechanical systems. The recent research results on deep transfer learning-based fault diagnosis, data-model fusion remaining useful life (RUL) prediction, etc., are focused on in the book. The contents are valuable and interesting to attract academic researchers, practitioners, and students in the field of prognostics and health management (PHM). Essential guidelines are provided for readers to understand, explore, and implement the presented methodologies, which promote further development of PHM in the big data era. Features: Addresses the critical challenges in the field of PHM at presentPresents both fundamental and cutting-edge research theories on intelligent fault diagnosis and prognosisProvides abundant experimental validations and engineering cases of the presented methodologies

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9789811691300
  • Format:
  • Inbunden
  • Sidor:
  • 296
  • Utgiven:
  • 20. oktober 2022
  • Utgåva:
  • 22001
  • Mått:
  • 160x22x241 mm.
  • Vikt:
  • 612 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 28. januari 2025
Förlängd ångerrätt till 31. januari 2025
  •  

    Kan ej levereras före jul.
    Köp nu och skriv ut ett presentkort

Beskrivning av Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems

This book presents systematic overviews and bright insights into big data-driven intelligent fault diagnosis and prognosis for mechanical systems. The recent research results on deep transfer learning-based fault diagnosis, data-model fusion remaining useful life (RUL) prediction, etc., are focused on in the book. The contents are valuable and interesting to attract academic researchers, practitioners, and students in the field of prognostics and health management (PHM). Essential guidelines are provided for readers to understand, explore, and implement the presented methodologies, which promote further development of PHM in the big data era.
Features:
Addresses the critical challenges in the field of PHM at presentPresents both fundamental and cutting-edge research theories on intelligent fault diagnosis and prognosisProvides abundant experimental validations and engineering cases of the presented methodologies

Användarnas betyg av Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems



Hitta liknande böcker
Boken Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.