Marknadens största urval
Snabb leverans
Om Computational Intelligence Applications for Text and Sentiment Data Analysis

Computational Intelligence Applications for Text and Sentiment Data Analysis explores the most recent advances in text information processing and data analysis technologies, specifically focusing on sentiment analysis from multifaceted data. The book investigates a wide range of challenges involved in the accurate analysis of online sentiments, including how to i) identify subjective information from text, i.e., exclusion of 'neutral' or 'factual' comments that do not carry sentiment information, ii) identify sentiment polarity, and iii) domain dependency. Spam and fake news detection, short abbreviation, sarcasm, word negation, and a lot of word ambiguity are also explored. Further chapters look at the difficult process of extracting sentiment from different multimodal information (audio, video and text), semantic concepts. In each chapter, the book's authors explore how computational intelligence (CI) techniques, such as deep learning, convolutional neural network, fuzzy and rough set, global optimizers, and hybrid machine learning techniques play an important role in solving the inherent problems of sentiment analysis applications.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9780323905350
  • Format:
  • Häftad
  • Sidor:
  • 270
  • Utgiven:
  • 20. juli 2023
  • Mått:
  • 230x27x151 mm.
  • Vikt:
  • 456 g.
  I lager
Leveranstid: 4-7 vardagar
Förväntad leverans: 16. januari 2025

Beskrivning av Computational Intelligence Applications for Text and Sentiment Data Analysis

Computational Intelligence Applications for Text and Sentiment Data Analysis explores the most recent advances in text information processing and data analysis technologies, specifically focusing on sentiment analysis from multifaceted data. The book investigates a wide range of challenges involved in the accurate analysis of online sentiments, including how to i) identify subjective information from text, i.e., exclusion of 'neutral' or 'factual' comments that do not carry sentiment information, ii) identify sentiment polarity, and iii) domain dependency. Spam and fake news detection, short abbreviation, sarcasm, word negation, and a lot of word ambiguity are also explored. Further chapters look at the difficult process of extracting sentiment from different multimodal information (audio, video and text), semantic concepts. In each chapter, the book's authors explore how computational intelligence (CI) techniques, such as deep learning, convolutional neural network, fuzzy and rough set, global optimizers, and hybrid machine learning techniques play an important role in solving the inherent problems of sentiment analysis applications.

Användarnas betyg av Computational Intelligence Applications for Text and Sentiment Data Analysis



Hitta liknande böcker
Boken Computational Intelligence Applications for Text and Sentiment Data Analysis finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.