Marknadens största urval
Snabb leverans

Crop Disease Recognition and Classification using Deep Learning

Om Crop Disease Recognition and Classification using Deep Learning

The world's largest agricultural need is high production; hence, most countries use modern techniques to boost crop yields. Advanced technology should increase yields. Other factors such as environmental stresses (pests, diseases, drought stress, nutritional deficits, and weeds) and pests affect plants at any stage. Thus, in agriculture, both quantity and quality are reduced. Crop diseases are the most important reason for quality and quantity losses in farming production. Such losses negatively affect the profit and production costs of stakeholders in farming. Conventionally, plant pathologists and farmers utilize their eyes to notice diseases and formulate decisions depending upon their knowledge that are often not precise and at times biased as in the earlier time a lot of types of diseases seems to be similar. This scheme paved the way for the needless usage of pesticides that resulted in high generation costs. Therefore, the requirement for a precise disease detector related to a consistent dataset to assist farmers is essential, particularly for the case of inexperienced and young ones . Advancements in computer vision help with the usage of ML or DL schemes. Moreover, there is a requirement for an earlier disease recognition system for protecting the yield over time. Accordingly, CNN is highly deployed in crop disease detection, and reasonable results are attained. Nevertheless, the crop disease images attained from lands were characteristically uncertain images that have a noteworthy effect on the enhancement of accuracy in crop disease recognition from images. There is a detrimental effect on agricultural output due to the prevalence of crop diseases, and increase food insecurity . The agricultural industry relies heavily on early identification of diseases, that prevention of crop diseases. Spots or scars on the leaves, stems, flowers, or fruits are common symptoms of crop diseases. Most of the time, anomalies can be diagnosed by looking for telltale signs that are specific to a given disease or pest. The leaves of crops are often the first to show signs of disease, making them an excellent starting point for diagnosis

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9798223247906
  • Format:
  • Häftad
  • Sidor:
  • 154
  • Utgiven:
  • 4. juli 2023
  • Mått:
  • 216x9x280 mm.
  • Vikt:
  • 406 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 23. januari 2025
Förlängd ångerrätt till 31. januari 2025
  •  

    Kan ej levereras före jul.
    Köp nu och skriv ut ett presentkort

Beskrivning av Crop Disease Recognition and Classification using Deep Learning

The world's largest agricultural need is high production; hence, most countries use modern techniques to boost crop yields. Advanced technology should increase yields. Other factors such as environmental stresses (pests, diseases, drought stress, nutritional deficits, and weeds) and pests affect plants at any stage. Thus, in agriculture, both quantity and quality are reduced.
Crop diseases are the most important reason for quality and quantity losses in farming production. Such losses negatively affect the profit and production costs of stakeholders in farming.

Conventionally, plant pathologists and farmers utilize their eyes to notice diseases and formulate decisions depending upon their knowledge that are often not precise and at times biased as in the earlier time a lot of types of diseases seems to be similar. This scheme paved the way for the needless usage of pesticides that resulted in high generation costs. Therefore, the requirement for a precise disease detector related to a consistent dataset to assist farmers is essential, particularly for the case of inexperienced and young ones . Advancements in computer vision help with the usage of ML or DL schemes. Moreover, there is a requirement for an earlier disease recognition system for protecting the yield over time.

Accordingly, CNN is highly deployed in crop disease detection, and reasonable results are attained. Nevertheless, the crop disease images attained from lands were characteristically uncertain images that have a noteworthy effect on the enhancement of accuracy in crop disease recognition from images.

There is a detrimental effect on agricultural output due to the prevalence of crop diseases, and increase food insecurity . The agricultural industry relies heavily on early identification of diseases, that prevention of crop diseases. Spots or scars on the leaves, stems, flowers, or fruits are common symptoms of crop diseases. Most of the time, anomalies can be diagnosed by looking for telltale signs that are specific to a given disease or pest. The leaves of crops are often the first to show signs of disease, making them an excellent starting point for diagnosis

Användarnas betyg av Crop Disease Recognition and Classification using Deep Learning



Hitta liknande böcker
Boken Crop Disease Recognition and Classification using Deep Learning finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.