Marknadens största urval
Snabb leverans

Data-Mining-Basierter Stream-Mining-Ansatz

Om Data-Mining-Basierter Stream-Mining-Ansatz

Das Clustering ist eine der wichtigsten Techniken im Data Mining. Sie zielt darauf ab, die Daten in Gruppen ähnlicher Objekte aufzuteilen. Dies wird als Cluster bezeichnet. Diese Forschung vergleicht den StreamKM++ Algorithmus mit den bestehenden Arbeiten, wie AP, IAPKM und IAPNA. Der StreamKM++-Algorithmus ist ein neuer Clustering-Algorithmus für Datenströme, der mit geringem Speicher- und Zeitaufwand ein gutes Clustering des Datenstroms erstellt.Viele Forscher haben mit statischen Clustering-Algorithmen gearbeitet, aber in Echtzeit sind die Daten dynamischer Natur. Wie z.B. Blogs, Webseiten, Audio- und Videodaten, usw., daher ist die konventionelle statische Technik in einer Echtzeitumgebung nicht geeignet. In dieser Arbeit wird der StreamKM++-Algorithmus verwendet, der eine hohe Clustering-Leistung im Vergleich zu traditionellen AP, IAPKM und IAPNA erreicht. Das experimentelle Ergebnis zeigt, dass der StreamKM++-Algorithmus im Vergleich zu bestehenden Arbeiten das beste Ergebnis erzielt. Er hat die durchschnittliche Genauigkeitsrate erhöht und die Rechenzeit, den Speicher und die Anzahl der Iterationen reduziert.

Visa mer
  • Språk:
  • Tyska
  • ISBN:
  • 9786207272266
  • Format:
  • Häftad
  • Utgiven:
  • 19. mars 2024
  • Mått:
  • 152x229x5 mm.
  • Vikt:
  • 127 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 10. december 2024

Beskrivning av Data-Mining-Basierter Stream-Mining-Ansatz

Das Clustering ist eine der wichtigsten Techniken im Data Mining. Sie zielt darauf ab, die Daten in Gruppen ähnlicher Objekte aufzuteilen. Dies wird als Cluster bezeichnet. Diese Forschung vergleicht den StreamKM++ Algorithmus mit den bestehenden Arbeiten, wie AP, IAPKM und IAPNA. Der StreamKM++-Algorithmus ist ein neuer Clustering-Algorithmus für Datenströme, der mit geringem Speicher- und Zeitaufwand ein gutes Clustering des Datenstroms erstellt.Viele Forscher haben mit statischen Clustering-Algorithmen gearbeitet, aber in Echtzeit sind die Daten dynamischer Natur. Wie z.B. Blogs, Webseiten, Audio- und Videodaten, usw., daher ist die konventionelle statische Technik in einer Echtzeitumgebung nicht geeignet. In dieser Arbeit wird der StreamKM++-Algorithmus verwendet, der eine hohe Clustering-Leistung im Vergleich zu traditionellen AP, IAPKM und IAPNA erreicht. Das experimentelle Ergebnis zeigt, dass der StreamKM++-Algorithmus im Vergleich zu bestehenden Arbeiten das beste Ergebnis erzielt. Er hat die durchschnittliche Genauigkeitsrate erhöht und die Rechenzeit, den Speicher und die Anzahl der Iterationen reduziert.

Användarnas betyg av Data-Mining-Basierter Stream-Mining-Ansatz



Hitta liknande böcker
Boken Data-Mining-Basierter Stream-Mining-Ansatz finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.