Marknadens största urval
Snabb leverans

Data Science at Scale with Python and Dask

Om Data Science at Scale with Python and Dask

Summary Dask is a native parallel analytics tool designed to integrate seamlessly with the libraries you''re already using, including Pandas, NumPy, and Scikit-Learn. With Dask you can crunch and work with huge datasets, using the tools you already have. And Data Science with Python and Dask is your guide to using Dask for your data projects without changing the way you work! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. You''ll find registration instructions inside the print book. About the Technology An efficient data pipeline means everything for the success of a data science project. Dask is a flexible library for parallel computing in Python that makes it easy to build intuitive workflows for ingesting and analyzing large, distributed datasets. Dask provides dynamic task scheduling and parallel collections that extend the functionality of NumPy, Pandas, and Scikit-learn, enabling users to scale their code from a single laptop to a cluster of hundreds of machines with ease. About the Book Data Science with Python and Dask teaches you to build scalable projects that can handle massive datasets. After meeting the Dask framework, you''ll analyze data in the NYC Parking Ticket database and use DataFrames to streamline your process. Then, you''ll create machine learning models using Dask-ML, build interactive visualizations, and build clusters using AWS and Docker. What''s inside Working with large, structured and unstructured datasetsVisualization with Seaborn and DatashaderImplementing your own algorithmsBuilding distributed apps with Dask DistributedPackaging and deploying Dask apps About the Reader For data scientists and developers with experience using Python and the PyData stack. About the Author Jesse Daniel is an experienced Python developer. He taught Python for Data Science at the University of Denver and leads a team of data scientists at a Denver-based media technology company. Table of Contents PART 1 - The Building Blocks of scalable computingWhy scalable computing matters Introducing Dask PART 2 - Working with Structured Data using Dask DataFrames Introducing Dask DataFrames Loading data into DataFrames Cleaning and transforming DataFrames Summarizing and analyzing DataFrames Visualizing DataFrames with Seaborn Visualizing location data with Datashader PART 3 - Extending and deploying DaskWorking with Bags and Arrays Machine learning with Dask-ML Scaling and deploying Dask

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9781617295607
  • Format:
  • Häftad
  • Sidor:
  • 296
  • Utgiven:
  • 11. oktober 2019
  • Mått:
  • 190x235x20 mm.
  • Vikt:
  • 560 g.
  I lager
Leveranstid: 4-7 vardagar
Förväntad leverans: 10. december 2024
Förlängd ångerrätt till 31. januari 2025

Beskrivning av Data Science at Scale with Python and Dask

Summary
Dask is a native parallel analytics tool designed to integrate seamlessly with the libraries you''re already using, including Pandas, NumPy, and Scikit-Learn. With Dask you can crunch and work with huge datasets, using the tools you already have. And Data Science with Python and Dask is your guide to using Dask for your data projects without changing the way you work!
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. You''ll find registration instructions inside the print book.
About the Technology
An efficient data pipeline means everything for the success of a data science project. Dask is a flexible library for parallel computing in Python that makes it easy to build intuitive workflows for ingesting and analyzing large, distributed datasets. Dask provides dynamic task scheduling and parallel collections that extend the functionality of NumPy, Pandas, and Scikit-learn, enabling users to scale their code from a single laptop to a cluster of hundreds of machines with ease.
About the Book
Data Science with Python and Dask teaches you to build scalable projects that can handle massive datasets. After meeting the Dask framework, you''ll analyze data in the NYC Parking Ticket database and use DataFrames to streamline your process. Then, you''ll create machine learning models using Dask-ML, build interactive visualizations, and build clusters using AWS and Docker.

What''s inside
Working with large, structured and unstructured datasetsVisualization with Seaborn and DatashaderImplementing your own algorithmsBuilding distributed apps with Dask DistributedPackaging and deploying Dask apps
About the Reader
For data scientists and developers with experience using Python and the PyData stack.
About the Author
Jesse Daniel is an experienced Python developer. He taught Python for Data Science at the University of Denver and leads a team of data scientists at a Denver-based media technology company.
Table of Contents
PART 1 - The Building Blocks of scalable computingWhy scalable computing matters Introducing Dask PART 2 - Working with Structured Data using Dask DataFrames Introducing Dask DataFrames Loading data into DataFrames Cleaning and transforming DataFrames Summarizing and analyzing DataFrames Visualizing DataFrames with Seaborn Visualizing location data with Datashader PART 3 - Extending and deploying DaskWorking with Bags and Arrays Machine learning with Dask-ML Scaling and deploying Dask

Användarnas betyg av Data Science at Scale with Python and Dask



Hitta liknande böcker
Boken Data Science at Scale with Python and Dask finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.