Marknadens största urval
Snabb leverans

Deep Learning for Hyperspectral Image Analysis and Classification

Om Deep Learning for Hyperspectral Image Analysis and Classification

This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly. This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are theoriginal contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9789813344228
  • Format:
  • Häftad
  • Sidor:
  • 207
  • Utgiven:
  • 22. februari 2022
  • Utgåva:
  • 12021
  • Mått:
  • 155x235x0 mm.
  • Vikt:
  • 343 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 24. december 2024
Förlängd ångerrätt till 31. januari 2025

Beskrivning av Deep Learning for Hyperspectral Image Analysis and Classification

This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly.
This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are theoriginal contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends.

Användarnas betyg av Deep Learning for Hyperspectral Image Analysis and Classification



Hitta liknande böcker
Boken Deep Learning for Hyperspectral Image Analysis and Classification finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.