Marknadens största urval
Snabb leverans

Delaunay-Triangulierungen in zwei und drei Dimensionen

Om Delaunay-Triangulierungen in zwei und drei Dimensionen

Inhaltsangabe:Einleitung: Das Voronoi-Diagramm und sein Dual, die Delaunay-Triangulierung, haben in vielen Gebieten der Naturwissenschaft und der Technik Anwendung gefunden, wie z.B. in der Kristallographie, in der Geographie und in der Metallurgie. Nachdem am Anfang dieses Jahrhunderts der russische Mathematiker Georges Voronoi Veröffentlichungen über die nach ihm benannte Struktur schrieb, verwendete in den 30er Jahren der Kristallograph Delaunay diese Struktur für die Simulation von Kristallwachstum sowie zur Beschreibung und Untersuchung von Kristallstrukturen. Weitere geographische Anwendungen finden sich in der Kartographie und in der Stadtplanung. Heute sind das Voronoi-Diagramm und die Delaunay-Triangulierung grundlegende Strukturen in der algorithmischen Geometrie (Computational Geometry). Eine naheliegende geometrische Anwendung des Voronoi-Diagramms besteht im Post-Office-Problem d.h. im Beantworten von Anfragen der Form, welcher Punkt einer Punktmenge in der Ebene oder im Raum zu einem vorgegebenen Punkt der nächste ist. Bei vielen Anfragen lohnt es sich, das Voronoi-Diagramm für die Bestimmung der nächsten 'Postämter' zu benutzen. Die geometrische Struktur des Voronoi-Diagramms kann schnell konstruiert werden (O(n log n) Zeit und enthält alle wichtigen Informationen über Nachbarschaften (O(n) Speicherplatzbedarf), aus denen sich in linearer Zeit wichtige Probleme der algorithmischen Geometrie berechnen lassen. Zu diesen zählen u.a. der euklidische minimale Spannbaum (EMST), der größte leere Kreis und die zwei nächsten Nachbarpunkte. Eine Näherungslösung für ein NP-vollständiges, graphentheoretisches Problem, das Problems des Handlungsreisenden, kann mit Hilfe der zweidimensionalen Delaunay-Triangulierung bzw. des EMST gewonnen werden. Das Problem des Handlungsreisenden besteht aus dem Bestimmen einer optimalen Rundtour durch n vorgegebene Punkte (Städte), ohne einen Punkt zweimal zu besuchen. In der Computer-Graphik eignet sich die Delaunay-Triangulierung besonders gut für die Visualisierung und Modellierung von geometrischen Objekten, wie z.B. Freiformflächen. Eine wichtige Eigenschaft der Delaunay-Triangulierung, dass die Winkel unter allen möglichen Triangulierungen optimal sind, rechtfertigt die Verwendung der Delaunay-Triangulierung bei der Netzgenerierung. Zur Visualisierung werden geometrische Objekte durch Dreiecksnetze approximiert, die dann mittels Hardware-Unterstützung schnell schattiert und dargestellt werden können. [¿]

Visa mer
  • Språk:
  • Tyska
  • ISBN:
  • 9783838666464
  • Format:
  • Häftad
  • Sidor:
  • 104
  • Utgiven:
  • 8. april 2003
  • Mått:
  • 210x148x6 mm.
  • Vikt:
  • 145 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 18. december 2024

Beskrivning av Delaunay-Triangulierungen in zwei und drei Dimensionen

Inhaltsangabe:Einleitung:
Das Voronoi-Diagramm und sein Dual, die Delaunay-Triangulierung, haben in vielen Gebieten der Naturwissenschaft und der Technik Anwendung gefunden, wie z.B. in der Kristallographie, in der Geographie und in der Metallurgie. Nachdem am Anfang dieses Jahrhunderts der russische Mathematiker Georges Voronoi Veröffentlichungen über die nach ihm benannte Struktur schrieb, verwendete in den 30er Jahren der Kristallograph Delaunay diese Struktur für die Simulation von Kristallwachstum sowie zur Beschreibung und Untersuchung von Kristallstrukturen. Weitere geographische Anwendungen finden sich in der Kartographie und in der Stadtplanung.
Heute sind das Voronoi-Diagramm und die Delaunay-Triangulierung grundlegende Strukturen in der algorithmischen Geometrie (Computational Geometry). Eine naheliegende geometrische Anwendung des Voronoi-Diagramms besteht im Post-Office-Problem d.h. im Beantworten von Anfragen der Form, welcher Punkt einer Punktmenge in der Ebene oder im Raum zu einem vorgegebenen Punkt der nächste ist. Bei vielen Anfragen lohnt es sich, das Voronoi-Diagramm für die Bestimmung der nächsten 'Postämter' zu benutzen.
Die geometrische Struktur des Voronoi-Diagramms kann schnell konstruiert werden (O(n log n) Zeit und enthält alle wichtigen Informationen über Nachbarschaften (O(n) Speicherplatzbedarf), aus denen sich in linearer Zeit wichtige Probleme der algorithmischen Geometrie berechnen lassen. Zu diesen zählen u.a. der euklidische minimale Spannbaum (EMST), der größte leere Kreis und die zwei nächsten Nachbarpunkte. Eine Näherungslösung für ein NP-vollständiges, graphentheoretisches Problem, das Problems des Handlungsreisenden, kann mit Hilfe der zweidimensionalen Delaunay-Triangulierung bzw. des EMST gewonnen werden. Das Problem des Handlungsreisenden besteht aus dem Bestimmen einer optimalen Rundtour durch n vorgegebene Punkte (Städte), ohne einen Punkt zweimal zu besuchen.
In der Computer-Graphik eignet sich die Delaunay-Triangulierung besonders gut für die Visualisierung und Modellierung von geometrischen Objekten, wie z.B. Freiformflächen. Eine wichtige Eigenschaft der Delaunay-Triangulierung, dass die Winkel unter allen möglichen Triangulierungen optimal sind, rechtfertigt die Verwendung der Delaunay-Triangulierung bei der Netzgenerierung. Zur Visualisierung werden geometrische Objekte durch Dreiecksnetze approximiert, die dann mittels Hardware-Unterstützung schnell schattiert und dargestellt werden können. [¿]

Användarnas betyg av Delaunay-Triangulierungen in zwei und drei Dimensionen



Hitta liknande böcker
Boken Delaunay-Triangulierungen in zwei und drei Dimensionen finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.