Marknadens största urval
Snabb leverans

Dynamics through First-Order Differential Equations in the Configuration Space

Om Dynamics through First-Order Differential Equations in the Configuration Space

The goal of this monograph is to answer the question, is it possible to solve the dynamics problem inside the configuration space instead of the phase space? By introducing a proper class of vector field ¿ the Cartesian vector field ¿ given in a Riemann space, the authors explore the connections between the first order ordinary differential equations (ODEs) associated to the Cartesian vector field in the configuration space of a given mechanical system and its dynamics. The result is a new perspective for studying the dynamics of mechanical systems, which allows the authors to present new cases of integrability for the Suslov and Veselova problem; establish the relation between the Cartesian vector field and the integrability of the geodesic flow in a special class of homogeneous surfaces; discuss the importance of the Nambu bracket in the study of first order ODEs; and offer a solution of the inverse problem in celestial mechanics.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9783031270949
  • Format:
  • Inbunden
  • Sidor:
  • 368
  • Utgiven:
  • 26. april 2023
  • Utgåva:
  • 23001
  • Mått:
  • 160x26x241 mm.
  • Vikt:
  • 717 g.
Leveranstid: 2-4 veckor
Förväntad leverans: 27. januari 2025
Förlängd ångerrätt till 31. januari 2025
  •  

    Kan ej levereras före jul.
    Köp nu och skriv ut ett presentkort

Beskrivning av Dynamics through First-Order Differential Equations in the Configuration Space

The goal of this monograph is to answer the question, is it possible to solve the dynamics problem inside the configuration space instead of the phase space? By introducing a proper class of vector field ¿ the Cartesian vector field ¿ given in a Riemann space, the authors explore the connections between the first order ordinary differential equations (ODEs) associated to the Cartesian vector field in the configuration space of a given mechanical system and its dynamics. The result is a new perspective for studying the dynamics of mechanical systems, which allows the authors to present new cases of integrability for the Suslov and Veselova problem; establish the relation between the Cartesian vector field and the integrability of the geodesic flow in a special class of homogeneous surfaces; discuss the importance of the Nambu bracket in the study of first order ODEs; and offer a solution of the inverse problem in celestial mechanics.

Användarnas betyg av Dynamics through First-Order Differential Equations in the Configuration Space



Hitta liknande böcker
Boken Dynamics through First-Order Differential Equations in the Configuration Space finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.