Marknadens största urval
Snabb leverans

Evolutionary Data Clustering: Algorithms and Applications

Om Evolutionary Data Clustering: Algorithms and Applications

This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering indiverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9789813341937
  • Format:
  • Häftad
  • Sidor:
  • 248
  • Utgiven:
  • 22. februari 2022
  • Utgåva:
  • 12021
  • Mått:
  • 155x235x0 mm.
  • Vikt:
  • 403 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 18. december 2024

Beskrivning av Evolutionary Data Clustering: Algorithms and Applications

This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering indiverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.

Användarnas betyg av Evolutionary Data Clustering: Algorithms and Applications



Hitta liknande böcker
Boken Evolutionary Data Clustering: Algorithms and Applications finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.