Marknadens största urval
Snabb leverans

Machine Learning in Modeling and Simulation

- Methods and Applications

Om Machine Learning in Modeling and Simulation

Machine learning (ML)  approaches have been extensively and successfully employed in various areas, like in economics, medical predictions,  face recognition, credit card fraud detection, and spam filtering. There is clearly also the potential that ML techniques developed in Engineering and the Sciences will drastically increase the possibilities of analysis and accelerate the design to analysis time.  With the use of ML techniques, coupled to conventional methods like finite element and digital twin technologies, new avenues of  modeling and simulation can be opened but the potential of these ML techniques needs to still be fully harvested, with the methods developed and enhanced. The objective of this book is to provide an overview of ML in Engineering and the Sciences presenting fundamental theoretical ingredients with a focus on the next generation of computer modeling in Engineering and the Sciences in which the exciting aspects of machine learning are incorporated. The book is of value to any researcher and practitioner interested in research or applications of ML in the areas of scientific modeling and computer aided engineering.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9783031366437
  • Format:
  • Inbunden
  • Sidor:
  • 450
  • Utgiven:
  • 4. oktober 2023
  • Mått:
  • 158x236x28 mm.
  • Vikt:
  • 975 g.
Leveranstid: Okänt - saknas för närvarande
Förlängd ångerrätt till 31. januari 2025
  •  

    Förväntas inte levereras innan jul

Beskrivning av Machine Learning in Modeling and Simulation

Machine learning (ML)  approaches have been extensively and successfully employed in various areas, like in economics, medical predictions,  face recognition, credit card fraud detection, and spam filtering. There is clearly also the potential that ML techniques developed in Engineering and the Sciences will drastically increase the possibilities of analysis and accelerate the design to analysis time.  With the use of ML techniques, coupled to conventional methods like finite element and digital twin technologies, new avenues of  modeling and simulation can be opened but the potential of these ML techniques needs to still be fully harvested, with the methods developed and enhanced. The objective of this book is to provide an overview of ML in Engineering and the Sciences presenting fundamental theoretical ingredients with a focus on the next generation of computer modeling in Engineering and the Sciences in which the exciting aspects of machine learning are incorporated. The book is of value to any researcher and practitioner interested in research or applications of ML in the areas of scientific modeling and computer aided engineering.

Användarnas betyg av Machine Learning in Modeling and Simulation



Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.