Om Machine Learning Meets Quantum Physics
Introduction to Material Modeling.- Kernel Methods for Quantum Chemistry.- Introduction to Neural Networks.- Building nonparametric n-body force fields using Gaussian process regression.- Machine-learning of atomic-scale properties based on physical principles.- Quantum Machine Learning with Response Operators in Chemical Compound Space.- Physical extrapolation of quantum observables by generalization with Gaussian Processes.- Message Passing Neural Networks.- Learning representations of molecules and materials with atomistic neural networks.- Molecular Dynamics with Neural Network Potentials.- High-Dimensional Neural Network Potentials for Atomistic Simulations.- Construction of Machine Learned Force Fields with Quantum Chemical Accuracy: Applications and Chemical Insights.- Active learning and Uncertainty Estimation.- Machine Learning for Molecular Dynamics on Long Timescales.- Database-driven High-Throughput Calculations and Machine Learning Models for Materials Design.- Polymer Genome: A polymer informatics platform to accelerate polymer discovery.- Bayesian Optimization in Materials Science.- Recommender Systems for Materials Discovery.- Generative Models for Automatic Chemical Design.
Visa mer