Marknadens största urval
Snabb leverans

Mastering Hyperspectral Imaging using ML and Spatial-Spectral Features

Om Mastering Hyperspectral Imaging using ML and Spatial-Spectral Features

This book introduces hyperspectral remote sensing as a transformative imaging technology, capturing intricate details across multiple spectral bands. Originating from a doctoral thesis, the book bridges academic exploration and practical applications in hyperspectral image classification. It pioneers novel methodologies using deep learning and machine learning, featuring the Deep Adversarial Learning Framework for enhanced accuracy. The text explores groundbreaking approaches employing principal component analysis, empirical mode decomposition, and Support Vector Machines. A semi-supervised classification method inspired by Cycle-GANs is also presented. The book aims to offer a comprehensive understanding of hyperspectral imaging, its methodologies, and practical implications, serving as a valuable resource for students, researchers, and practitioners in the field.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9786207459094
  • Format:
  • Häftad
  • Sidor:
  • 112
  • Utgiven:
  • 12. januari 2024
  • Mått:
  • 150x7x220 mm.
  • Vikt:
  • 185 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 20. december 2024
Förlängd ångerrätt till 31. januari 2025

Beskrivning av Mastering Hyperspectral Imaging using ML and Spatial-Spectral Features

This book introduces hyperspectral remote sensing as a transformative imaging technology, capturing intricate details across multiple spectral bands. Originating from a doctoral thesis, the book bridges academic exploration and practical applications in hyperspectral image classification. It pioneers novel methodologies using deep learning and machine learning, featuring the Deep Adversarial Learning Framework for enhanced accuracy. The text explores groundbreaking approaches employing principal component analysis, empirical mode decomposition, and Support Vector Machines. A semi-supervised classification method inspired by Cycle-GANs is also presented. The book aims to offer a comprehensive understanding of hyperspectral imaging, its methodologies, and practical implications, serving as a valuable resource for students, researchers, and practitioners in the field.

Användarnas betyg av Mastering Hyperspectral Imaging using ML and Spatial-Spectral Features



Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.