Marknadens största urval
Snabb leverans

Principles and Methods for Data Science

Om Principles and Methods for Data Science

Principles and Methods for Data Science, Volume 43 in the Handbook of Statistics series, highlights new advances in the field, with this updated volume presenting interesting and timely topics, including Competing risks, aims and methods, Data analysis and mining of microbial community dynamics, Support Vector Machines, a robust prediction method with applications in bioinformatics, Bayesian Model Selection for Data with High Dimension, High dimensional statistical inference: theoretical development to data analytics, Big data challenges in genomics, Analysis of microarray gene expression data using information theory and stochastic algorithm, Hybrid Models, Markov Chain Monte Carlo Methods: Theory and Practice, and more. Provides the authority and expertise of leading contributors from an international board of authorsPresents the latest release in the Handbook of Statistics seriesUpdated release includes the latest information on Principles and Methods for Data Science

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9780444642110
  • Format:
  • Inbunden
  • Sidor:
  • 496
  • Utgiven:
  • 27. maj 2020
  • Mått:
  • 152x229x0 mm.
  • Vikt:
  • 980 g.
Leveranstid: 2-4 veckor
Förväntad leverans: 27. januari 2025
Förlängd ångerrätt till 31. januari 2025
  •  

    Kan ej levereras före jul.
    Köp nu och skriv ut ett presentkort

Beskrivning av Principles and Methods for Data Science

Principles and Methods for Data Science, Volume 43 in the Handbook of Statistics series, highlights new advances in the field, with this updated volume presenting interesting and timely topics, including Competing risks, aims and methods, Data analysis and mining of microbial community dynamics, Support Vector Machines, a robust prediction method with applications in bioinformatics, Bayesian Model Selection for Data with High Dimension, High dimensional statistical inference: theoretical development to data analytics, Big data challenges in genomics, Analysis of microarray gene expression data using information theory and stochastic algorithm, Hybrid Models, Markov Chain Monte Carlo Methods: Theory and Practice, and more.

Provides the authority and expertise of leading contributors from an international board of authorsPresents the latest release in the Handbook of Statistics seriesUpdated release includes the latest information on Principles and Methods for Data Science

Användarnas betyg av Principles and Methods for Data Science



Hitta liknande böcker
Boken Principles and Methods for Data Science finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.