Marknadens största urval
Snabb leverans

Pseudocapacitive Storage in Advanced Nanostructured Materials towards Flexible Supercapacitor Device

- Molybdenum Nitride and Oxynitrides

Om Pseudocapacitive Storage in Advanced Nanostructured Materials towards Flexible Supercapacitor Device

Flexible Supercapacitors (FSCs) possessing higher power output, greater energy density, extended cycle life, superior rate performance, and eco-friendly attributes can satisfy the future energy storage and delivery requirements in upcoming flexible electronics. However, the current supercapacitors (SCs) technology based on carbonaceous or conducting polymers is constrained primarily by their low energy density, restraining their large-scale implementation. In this context, Pseudocapacitive materials such as Transition metal nitrides (TMNs) and transition metal oxides (TMOs) that undergo rapid and highly reversible redox and intercalation kinetics at or near the electrode surface, coupled with electric double-layer capacitive (EDLC) kinetics, can assist FSCs in achieving higher energy and power densities simultaneously.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9789999316354
  • Format:
  • Häftad
  • Utgiven:
  • 18. mars 2024
  • Mått:
  • 152x229x4 mm.
  • Vikt:
  • 118 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 24. februari 2025

Beskrivning av Pseudocapacitive Storage in Advanced Nanostructured Materials towards Flexible Supercapacitor Device

Flexible Supercapacitors (FSCs) possessing higher power output, greater energy density, extended cycle life, superior rate performance, and eco-friendly attributes can satisfy the future energy storage and delivery requirements in upcoming flexible electronics. However, the current supercapacitors (SCs) technology based on carbonaceous or conducting polymers is constrained primarily by their low energy density, restraining their large-scale implementation. In this context, Pseudocapacitive materials such as Transition metal nitrides (TMNs) and transition metal oxides (TMOs) that undergo rapid and highly reversible redox and intercalation kinetics at or near the electrode surface, coupled with electric double-layer capacitive (EDLC) kinetics, can assist FSCs in achieving higher energy and power densities simultaneously.

Användarnas betyg av Pseudocapacitive Storage in Advanced Nanostructured Materials towards Flexible Supercapacitor Device



Hitta liknande böcker
Boken Pseudocapacitive Storage in Advanced Nanostructured Materials towards Flexible Supercapacitor Device finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.