Marknadens största urval
Snabb leverans

Python 3 and Feature Engineering

Om Python 3 and Feature Engineering

This book is designed for data scientists, machine learning practitioners, and anyone with a foundational understanding of Python 3.x. In the evolving field of data science, the ability to manipulate and understand datasets is crucial. The book offers content for mastering these skills using Python 3. The book provides a fast-paced introduction to a wealth of feature engineering concepts, equipping readers with the knowledge needed to transform raw data into meaningful information. Inside, you'll find a detailed exploration of various types of data, methodologies for outlier detection using Scikit-Learn, strategies for robust data cleaning, and the intricacies of data wrangling. The book further explores feature selection, detailing methods for handling imbalanced datasets, and gives a practical overview of feature engineering, including scaling and extraction techniques necessary for different machine learning algorithms. It concludes with a treatment of dimensionality reduction, where you'll navigate through complex concepts like PCA and various reduction techniques, with an emphasis on the powerful Scikit-Learn framework.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9781683929499
  • Format:
  • Häftad
  • Sidor:
  • 216
  • Utgiven:
  • 13. december 2023
  • Vikt:
  • 426 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 24. mars 2025

Beskrivning av Python 3 and Feature Engineering

This book is designed for data scientists, machine learning practitioners, and anyone with a foundational understanding of Python 3.x. In the evolving field of data science, the ability to manipulate and understand datasets is crucial. The book offers content for mastering these skills using Python 3. The book provides a fast-paced introduction to a wealth of feature engineering concepts, equipping readers with the knowledge needed to transform raw data into meaningful information. Inside, you'll find a detailed exploration of various types of data, methodologies for outlier detection using Scikit-Learn, strategies for robust data cleaning, and the intricacies of data wrangling. The book further explores feature selection, detailing methods for handling imbalanced datasets, and gives a practical overview of feature engineering, including scaling and extraction techniques necessary for different machine learning algorithms. It concludes with a treatment of dimensionality reduction, where you'll navigate through complex concepts like PCA and various reduction techniques, with an emphasis on the powerful Scikit-Learn framework.

Användarnas betyg av Python 3 and Feature Engineering



Hitta liknande böcker
Boken Python 3 and Feature Engineering finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.