Marknadens största urval
Snabb leverans

Randomized Cunningham Numbers in Cryptography

Om Randomized Cunningham Numbers in Cryptography

In this research, we study primality testing of arbitrary integers via number theory, randomized algorithms and optimization theories. Concerning fundamentals of modern cryptography, we focus on the cryptanalysis, cryptosystems and RSA keys, which are widely used in secure communications, e.g., banking systems and other platforms with an online security. For a given n-bit integer N, our consideration is realized as a decision problem, viz. an optimized algorithm rendering the output YES, if N is a prime, and NO otherwise. In order to design such an algorithm, we begin by examining essential ingredients from the number theory, namely, divisibility, modular arithmetic, integer representations, distributions of primes, primality testing algorithms, greatest common divisor, least common multiplication, pseudoprimes, Np-hard discrete logarithm problem, residues and others. Hereby, we give special attention to the congruence relations, Chinese remainder theorem and Fermat's little theorem towards the optimal primality testing of an integer. Finally, we anticipate optimized characterizations of Cunningham numbers in the light of randomization theory and their applications to cryptography.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9786139858477
  • Format:
  • Häftad
  • Sidor:
  • 144
  • Utgiven:
  • 19. juni 2018
  • Mått:
  • 229x152x9 mm.
  • Vikt:
  • 222 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 6. december 2024

Beskrivning av Randomized Cunningham Numbers in Cryptography

In this research, we study primality testing of arbitrary integers via number theory, randomized algorithms and optimization theories. Concerning fundamentals of modern cryptography, we focus on the cryptanalysis, cryptosystems and RSA keys, which are widely used in secure communications, e.g., banking systems and other platforms with an online security. For a given n-bit integer N, our consideration is realized as a decision problem, viz. an optimized algorithm rendering the output YES, if N is a prime, and NO otherwise. In order to design such an algorithm, we begin by examining essential ingredients from the number theory, namely, divisibility, modular arithmetic, integer representations, distributions of primes, primality testing algorithms, greatest common divisor, least common multiplication, pseudoprimes, Np-hard discrete logarithm problem, residues and others. Hereby, we give special attention to the congruence relations, Chinese remainder theorem and Fermat's little theorem towards the optimal primality testing of an integer. Finally, we anticipate optimized characterizations of Cunningham numbers in the light of randomization theory and their applications to cryptography.

Användarnas betyg av Randomized Cunningham Numbers in Cryptography



Hitta liknande böcker
Boken Randomized Cunningham Numbers in Cryptography finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.