Marknadens största urval
Snabb leverans

Recent Progress on the Donaldson–Thomas Theory

- Wall-Crossing and Refined Invariants

Om Recent Progress on the Donaldson–Thomas Theory

This book is an exposition of recent progress on the Donaldson¿Thomas (DT) theory. The DT invariant was introduced by R. Thomas in 1998 as a virtual counting of stable coherent sheaves on Calabi¿Yau 3-folds. Later, it turned out that the DT invariants have many interesting properties and appear in several contexts such as the Gromov¿Witten/Donaldson¿Thomas conjecture on curve-counting theories, wall-crossing in derived categories with respect to Bridgeland stability conditions, BPS state counting in string theory, and others. Recently, a deeper structure of the moduli spaces of coherent sheaves on Calabi¿Yau 3-folds was found through derived algebraic geometry. These moduli spaces admit shifted symplectic structures and the associated d-critical structures, which lead to refined versions of DT invariants such as cohomological DT invariants. The idea of cohomological DT invariants led to a mathematical definition of the Gopakumar¿Vafa invariant, which was firstproposed by Gopakumar¿Vafa in 1998, but its precise mathematical definition has not been available until recently. This book surveys the recent progress on DT invariants and related topics, with a focus on applications to curve-counting theories.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9789811678370
  • Format:
  • Häftad
  • Sidor:
  • 104
  • Utgiven:
  • 16. december 2021
  • Utgåva:
  • 12021
  • Mått:
  • 234x156x11 mm.
  • Vikt:
  • 186 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 18. december 2024

Beskrivning av Recent Progress on the Donaldson–Thomas Theory

This book is an exposition of recent progress on the Donaldson¿Thomas (DT) theory. The DT invariant was introduced by R. Thomas in 1998 as a virtual counting of stable coherent sheaves on Calabi¿Yau 3-folds. Later, it turned out that the DT invariants have many interesting properties and appear in several contexts such as the Gromov¿Witten/Donaldson¿Thomas conjecture on curve-counting theories, wall-crossing in derived categories with respect to Bridgeland stability conditions, BPS state counting in string theory, and others.
Recently, a deeper structure of the moduli spaces of coherent sheaves on Calabi¿Yau 3-folds was found through derived algebraic geometry. These moduli spaces admit shifted symplectic structures and the associated d-critical structures, which lead to refined versions of DT invariants such as cohomological DT invariants. The idea of cohomological DT invariants led to a mathematical definition of the Gopakumar¿Vafa invariant, which was firstproposed by Gopakumar¿Vafa in 1998, but its precise mathematical definition has not been available until recently.
This book surveys the recent progress on DT invariants and related topics, with a focus on applications to curve-counting theories.

Användarnas betyg av Recent Progress on the Donaldson–Thomas Theory



Hitta liknande böcker
Boken Recent Progress on the Donaldson–Thomas Theory finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.