Marknadens största urval
Snabb leverans

Smoothings of Piecewise Linear Manifolds. (AM-80), Volume 80

Om Smoothings of Piecewise Linear Manifolds. (AM-80), Volume 80

The intention of the authors is to examine the relationship between piecewise linear structure and differential structure: a relationship, they assert, that can be understood as a homotopy obstruction theory, and, hence, can be studied by using the traditional techniques of algebraic topology. Thus the book attacks the problem of existence and classification (up to isotopy) of differential structures compatible with a given combinatorial structure on a manifold. The problem is completely "solved" in the sense that it is reduced to standard problems of algebraic topology. The first part of the book is purely geometrical; it proves that every smoothing of the product of a manifold M and an interval is derived from an essentially unique smoothing of M. In the second part this result is used to translate the classification of smoothings into the problem of putting a linear structure on the tangent microbundle of M. This in turn is converted to the homotopy problem of classifying maps from M into a certain space PL/O. The set of equivalence classes of smoothings on M is given a natural abelian group structure.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9780691081458
  • Format:
  • Häftad
  • Sidor:
  • 140
  • Utgiven:
  • 21. oktober 1974
  • Mått:
  • 152x229x8 mm.
  • Vikt:
  • 227 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 27. januari 2025
Förlängd ångerrätt till 31. januari 2025
  •  

    Kan ej levereras före jul.
    Köp nu och skriv ut ett presentkort

Beskrivning av Smoothings of Piecewise Linear Manifolds. (AM-80), Volume 80

The intention of the authors is to examine the relationship between piecewise linear structure and differential structure: a relationship, they assert, that can be understood as a homotopy obstruction theory, and, hence, can be studied by using the traditional techniques of algebraic topology.
Thus the book attacks the problem of existence and classification (up to isotopy) of differential structures compatible with a given combinatorial structure on a manifold. The problem is completely "solved" in the sense that it is reduced to standard problems of algebraic topology.
The first part of the book is purely geometrical; it proves that every smoothing of the product of a manifold M and an interval is derived from an essentially unique smoothing of M. In the second part this result is used to translate the classification of smoothings into the problem of putting a linear structure on the tangent microbundle of M. This in turn is converted to the homotopy problem of classifying maps from M into a certain space PL/O. The set of equivalence classes of smoothings on M is given a natural abelian group structure.

Användarnas betyg av Smoothings of Piecewise Linear Manifolds. (AM-80), Volume 80



Hitta liknande böcker
Boken Smoothings of Piecewise Linear Manifolds. (AM-80), Volume 80 finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.