Marknadens största urval
Snabb leverans

Statistical Analysis for High-Dimensional Data

- The Abel Symposium 2014

Om Statistical Analysis for High-Dimensional Data

This book features research contributions fromThe Abel Symposium on Statistical Analysis for High Dimensional Data, held inNyvågar, Lofoten, Norway, in May 2014.The focus of the symposium was on statisticaland machine learning methodologies specifically developed for inference in "bigdata" situations, with particular reference to genomic applications. Thecontributors, who are among the most prominent researchers on the theory ofstatistics for high dimensional inference, present new theories and methods, aswell as challenging applications and computational solutions. Specific themesinclude, among others, variable selection and screening, penalised regression,sparsity, thresholding, low dimensional structures, computational challenges,non-convex situations, learning graphical models, sparse covariance andprecision matrices, semi- and non-parametric formulations, multiple testing,classification, factor models, clustering, and preselection.Highlighting cutting-edge researchand casting light on future research directions, the contributions will benefitgraduate students and researchers in computational biology, statistics and themachine learning community.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9783319800738
  • Format:
  • Häftad
  • Sidor:
  • 306
  • Utgiven:
  • 30. mars 2018
  • Utgåva:
  • 12016
  • Mått:
  • 155x235x0 mm.
  • Vikt:
  • 492 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 16. december 2024

Beskrivning av Statistical Analysis for High-Dimensional Data

This book features research contributions fromThe Abel Symposium on Statistical Analysis for High Dimensional Data, held inNyvågar, Lofoten, Norway, in May 2014.The focus of the symposium was on statisticaland machine learning methodologies specifically developed for inference in "bigdata" situations, with particular reference to genomic applications. Thecontributors, who are among the most prominent researchers on the theory ofstatistics for high dimensional inference, present new theories and methods, aswell as challenging applications and computational solutions. Specific themesinclude, among others, variable selection and screening, penalised regression,sparsity, thresholding, low dimensional structures, computational challenges,non-convex situations, learning graphical models, sparse covariance andprecision matrices, semi- and non-parametric formulations, multiple testing,classification, factor models, clustering, and preselection.Highlighting cutting-edge researchand casting light on future research directions, the contributions will benefitgraduate students and researchers in computational biology, statistics and themachine learning community.

Användarnas betyg av Statistical Analysis for High-Dimensional Data



Hitta liknande böcker
Boken Statistical Analysis for High-Dimensional Data finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.