Marknadens största urval
Snabb leverans

Strong Rigidity of Locally Symmetric Spaces. (AM-78), Volume 78

Om Strong Rigidity of Locally Symmetric Spaces. (AM-78), Volume 78

Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls "strong rigidity": this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini, Weil, Borel, and Raghunathan. The proof combines the theory of semi-simple Lie groups, discrete subgroups, the geometry of E. Cartan's symmetric Riemannian spaces, elements of ergodic theory, and the fundamental theorem of projective geometry as applied to Tit's geometries. In his proof the author introduces two new notions having independent interest: one is "pseudo-isometries"; the other is a notion of a quasi-conformal mapping over the division algebra K (K equals real, complex, quaternion, or Cayley numbers). The author attempts to make the account accessible to readers with diverse backgrounds, and the book contains capsule descriptions of the various theories that enter the proof.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9780691081366
  • Format:
  • Häftad
  • Sidor:
  • 204
  • Utgiven:
  • 21. december 1973
  • Mått:
  • 229x151x15 mm.
  • Vikt:
  • 310 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 24. december 2024
Förlängd ångerrätt till 31. januari 2025

Beskrivning av Strong Rigidity of Locally Symmetric Spaces. (AM-78), Volume 78

Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls "strong rigidity": this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini, Weil, Borel, and Raghunathan.
The proof combines the theory of semi-simple Lie groups, discrete subgroups, the geometry of E. Cartan's symmetric Riemannian spaces, elements of ergodic theory, and the fundamental theorem of projective geometry as applied to Tit's geometries. In his proof the author introduces two new notions having independent interest: one is "pseudo-isometries"; the other is a notion of a quasi-conformal mapping over the division algebra K (K equals real, complex, quaternion, or Cayley numbers). The author attempts to make the account accessible to readers with diverse backgrounds, and the book contains capsule descriptions of the various theories that enter the proof.

Användarnas betyg av Strong Rigidity of Locally Symmetric Spaces. (AM-78), Volume 78



Hitta liknande böcker
Boken Strong Rigidity of Locally Symmetric Spaces. (AM-78), Volume 78 finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.