Marknadens största urval
Snabb leverans

Uniqueness Result Related to Meromorphic Functions Sharing Two Sets

Om Uniqueness Result Related to Meromorphic Functions Sharing Two Sets

With the help of a new unique range set we investigate the well known question of Gross and prove a uniqueness theorem on meromorphic functions sharing two sets. The result in this paper will improve and supplement some earlier results. In this paper, by meromorphic functions we will always mean meromorphic functions in the complex plane. We adopt the standard notations of the Nevanlinna theory of meromorphic functions as explained in. It will be convenient to let E denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9786202011723
  • Format:
  • Häftad
  • Sidor:
  • 60
  • Utgiven:
  • 12. juni 2019
  • Mått:
  • 229x152x4 mm.
  • Vikt:
  • 100 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 22. november 2024

Beskrivning av Uniqueness Result Related to Meromorphic Functions Sharing Two Sets

With the help of a new unique range set we investigate the well known question of Gross and prove a uniqueness theorem on meromorphic functions sharing two sets. The result in this paper will improve and supplement some earlier results. In this paper, by meromorphic functions we will always mean meromorphic functions in the complex plane. We adopt the standard notations of the Nevanlinna theory of meromorphic functions as explained in. It will be convenient to let E denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence.

Användarnas betyg av Uniqueness Result Related to Meromorphic Functions Sharing Two Sets



Hitta liknande böcker
Boken Uniqueness Result Related to Meromorphic Functions Sharing Two Sets finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.