Marknadens största urval
Snabb leverans

Universal Features for High-Dimensional Learning and Inference

Om Universal Features for High-Dimensional Learning and Inference

In many contemporary and emerging applications of machine learning and statistical inference, the phenomena of interest are characterized by variables defined over large alphabets. This increasing size of both the data and the number of inferences, and the limited available training data means there is a need to understand which inference tasks can be most effectively carriedout, and, in turn, what features of the data are most relevant to them. In this monograph, the authors develop the idea of extracting "universally good" features, and establish that diverse notions of such universality lead to precisely the same features. The information-theoretic approach used results in a local information geometric analysis that facilitates their computation in a host of applications. The authors provide a comprehensive treatment that guides the reader through the basic principles to the advanced techniques including many new results. They emphasize a development from first-principles together with common, unifying terminology and notation, and pointers to the rich embodying literature, both historical and contemporary. Written for students and researchers, this monograph is a complete treatise on the information theoretic treatment of a recognized and current problem in machine learning and statistical inference.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9781638281764
  • Format:
  • Häftad
  • Sidor:
  • 320
  • Utgiven:
  • 5. februari 2024
  • Mått:
  • 156x17x234 mm.
  • Vikt:
  • 488 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 25. november 2024

Beskrivning av Universal Features for High-Dimensional Learning and Inference

In many contemporary and emerging applications of machine learning and statistical inference, the phenomena of interest are characterized by variables defined over large alphabets. This increasing size of both the data and the number of inferences, and the limited available training data means there is a need to understand which inference tasks can be most effectively carriedout, and, in turn, what features of the data are most relevant to them. In this monograph, the authors develop the idea of extracting "universally good" features, and establish that diverse notions of such universality lead to precisely the same features. The information-theoretic approach used results in a local information geometric analysis that facilitates their computation in a host of applications. The authors provide a comprehensive treatment that guides the reader through the basic principles to the advanced techniques including many new results. They emphasize a development from first-principles together with common, unifying terminology and notation, and pointers to the rich embodying literature, both historical and contemporary. Written for students and researchers, this monograph is a complete treatise on the information theoretic treatment of a recognized and current problem in machine learning and statistical inference.

Användarnas betyg av Universal Features for High-Dimensional Learning and Inference



Hitta liknande böcker
Boken Universal Features for High-Dimensional Learning and Inference finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.