Marknadens största urval
Snabb leverans

Weil's Conjecture for Function Fields

- Volume I (AMS-199)

Om Weil's Conjecture for Function Fields

A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: WeilΓÇÖs conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of WeilΓÇÖs conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting Γäô-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors. Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies WeilΓÇÖs conjecture. The proof of the product formula will appear in a sequel volume.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9780691182131
  • Format:
  • Inbunden
  • Sidor:
  • 320
  • Utgiven:
  • 19. februari 2019
  • Mått:
  • 241x163x28 mm.
  • Vikt:
  • 672 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 17. december 2024

Beskrivning av Weil's Conjecture for Function Fields

A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: WeilΓÇÖs conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of WeilΓÇÖs conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting Γäô-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.
Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies WeilΓÇÖs conjecture. The proof of the product formula will appear in a sequel volume.

Användarnas betyg av Weil's Conjecture for Function Fields



Hitta liknande böcker
Boken Weil's Conjecture for Function Fields finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.