Marknadens största urval
Snabb leverans

An Introduction to Duplicate Detection

Om An Introduction to Duplicate Detection

With the ever increasing volume of data, data quality problems abound. Multiple, yet different representations of the same real-world objects in data, duplicates, are one of the most intriguing data quality problems. The effects of such duplicates are detrimental; for instance, bank customers can obtain duplicate identities, inventory levels are monitored incorrectly, catalogs are mailed multiple times to the same household, etc. Automatically detecting duplicates is difficult: First, duplicate representations are usually not identical but slightly differ in their values. Second, in principle all pairs of records should be compared, which is infeasible for large volumes of data. This lecture examines closely the two main components to overcome these difficulties: (i) Similarity measures are used to automatically identify duplicates when comparing two records. Well-chosen similarity measures improve the effectiveness of duplicate detection. (ii) Algorithms are developed to perform on very large volumes of data in search for duplicates. Well-designed algorithms improve the efficiency of duplicate detection. Finally, we discuss methods to evaluate the success of duplicate detection. Table of Contents: Data Cleansing: Introduction and Motivation / Problem Definition / Similarity Functions / Duplicate Detection Algorithms / Evaluating Detection Success / Conclusion and Outlook / Bibliography

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9783031007071
  • Format:
  • Häftad
  • Sidor:
  • 88
  • Utgiven:
  • 12. mars 2010
  • Mått:
  • 191x6x235 mm.
  • Vikt:
  • 183 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 13. december 2024

Beskrivning av An Introduction to Duplicate Detection

With the ever increasing volume of data, data quality problems abound. Multiple, yet different representations of the same real-world objects in data, duplicates, are one of the most intriguing data quality problems. The effects of such duplicates are detrimental; for instance, bank customers can obtain duplicate identities, inventory levels are monitored incorrectly, catalogs are mailed multiple times to the same household, etc. Automatically detecting duplicates is difficult: First, duplicate representations are usually not identical but slightly differ in their values. Second, in principle all pairs of records should be compared, which is infeasible for large volumes of data. This lecture examines closely the two main components to overcome these difficulties: (i) Similarity measures are used to automatically identify duplicates when comparing two records. Well-chosen similarity measures improve the effectiveness of duplicate detection. (ii) Algorithms are developed to perform on very large volumes of data in search for duplicates. Well-designed algorithms improve the efficiency of duplicate detection. Finally, we discuss methods to evaluate the success of duplicate detection. Table of Contents: Data Cleansing: Introduction and Motivation / Problem Definition / Similarity Functions / Duplicate Detection Algorithms / Evaluating Detection Success / Conclusion and Outlook / Bibliography

Användarnas betyg av An Introduction to Duplicate Detection



Hitta liknande böcker
Boken An Introduction to Duplicate Detection finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.