Marknadens största urval
Snabb leverans

Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms

Om Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms

Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios. The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts: Part I: Introduction to optimization, benchmarking, and statistical analysis ¿ Chapters 2-4. Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms ¿ Chapters 5-7. Part III: Implementation and application of Deep Statistical Comparison ¿ Chapter 8.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9783030969165
  • Format:
  • Inbunden
  • Sidor:
  • 152
  • Utgiven:
  • 12. juni 2022
  • Utgåva:
  • 22001
  • Mått:
  • 160x14x241 mm.
  • Vikt:
  • 401 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 28. januari 2025
Förlängd ångerrätt till 31. januari 2025
  •  

    Kan ej levereras före jul.
    Köp nu och skriv ut ett presentkort

Beskrivning av Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms

Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios.
The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts:
Part I: Introduction to optimization, benchmarking, and statistical analysis ¿ Chapters 2-4.
Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms ¿ Chapters 5-7.
Part III: Implementation and application of Deep Statistical Comparison ¿ Chapter 8.

Användarnas betyg av Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms



Hitta liknande böcker
Boken Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.