Marknadens största urval
Snabb leverans
Om Ellipse Fitting for Computer Vision

Because circular objects are projected to ellipses in images, ellipse fitting is a first step for 3-D analysis of circular objects in computer vision applications. For this reason, the study of ellipse fitting began as soon as computers came into use for image analysis in the 1970s, but it is only recently that optimal computation techniques based on the statistical properties of noise were established. These include renormalization (1993), which was then improved as FNS (2000) and HEIV (2000). Later, further improvements, called hyperaccurate correction (2006), HyperLS (2009), and hyper-renormalization (2012), were presented. Today, these are regarded as the most accurate fitting methods among all known techniques. This book describes these algorithms as well implementation details and applications to 3-D scene analysis. We also present general mathematical theories of statistical optimization underlying all ellipse fitting algorithms, including rigorous covariance and bias analyses and the theoretical accuracy limit. The results can be directly applied to other computer vision tasks including computing fundamental matrices and homographies between images. This book can serve not simply as a reference of ellipse fitting algorithms for researchers, but also as learning material for beginners who want to start computer vision research. The sample program codes are downloadable from the website: https://sites.google.com/a/morganclaypool.com/ellipse-fitting-for-computer-vision-implementation-and-applications.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9783031006876
  • Format:
  • Häftad
  • Sidor:
  • 144
  • Utgiven:
  • 22. april 2016
  • Mått:
  • 191x9x235 mm.
  • Vikt:
  • 284 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 23. januari 2025
Förlängd ångerrätt till 31. januari 2025
  •  

    Kan ej levereras före jul.
    Köp nu och skriv ut ett presentkort

Beskrivning av Ellipse Fitting for Computer Vision

Because circular objects are projected to ellipses in images, ellipse fitting is a first step for 3-D analysis of circular objects in computer vision applications. For this reason, the study of ellipse fitting began as soon as computers came into use for image analysis in the 1970s, but it is only recently that optimal computation techniques based on the statistical properties of noise were established. These include renormalization (1993), which was then improved as FNS (2000) and HEIV (2000). Later, further improvements, called hyperaccurate correction (2006), HyperLS (2009), and hyper-renormalization (2012), were presented. Today, these are regarded as the most accurate fitting methods among all known techniques. This book describes these algorithms as well implementation details and applications to 3-D scene analysis. We also present general mathematical theories of statistical optimization underlying all ellipse fitting algorithms, including rigorous covariance and bias analyses and the theoretical accuracy limit. The results can be directly applied to other computer vision tasks including computing fundamental matrices and homographies between images. This book can serve not simply as a reference of ellipse fitting algorithms for researchers, but also as learning material for beginners who want to start computer vision research. The sample program codes are downloadable from the website: https://sites.google.com/a/morganclaypool.com/ellipse-fitting-for-computer-vision-implementation-and-applications.

Användarnas betyg av Ellipse Fitting for Computer Vision



Hitta liknande böcker
Boken Ellipse Fitting for Computer Vision finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.