Marknadens största urval
Snabb leverans

Inverse Linear Problems on Hilbert Space and their Krylov Solvability

Om Inverse Linear Problems on Hilbert Space and their Krylov Solvability

This book presents a thorough discussion of the theory of abstract inverse linear problems on Hilbert space. Given an unknown vector f in a Hilbert space H, a linear operator A acting on H, and a vector g in H satisfying Af=g, one is interested in approximating f by finite linear combinations of g, Ag, A2g, A3g, ¿ The closed subspace generated by the latter vectors is called the Krylov subspace of H generated by g and A. The possibility of solving this inverse problem by means of projection methods on the Krylov subspace is the main focus of this text. After giving a broad introduction to the subject, examples and counterexamples of Krylov-solvable and non-solvable inverse problems are provided, together with results on uniqueness of solutions, classes of operators inducing Krylov-solvable inverse problems, and the behaviour of Krylov subspaces under small perturbations. An appendix collects material on weaker convergence phenomena in general projection methods. This subject of this book lies at the boundary of functional analysis/operator theory and numerical analysis/approximation theory and will be of interest to graduate students and researchers in any of these fields.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9783030881610
  • Format:
  • Häftad
  • Sidor:
  • 152
  • Utgiven:
  • 11. februari 2023
  • Utgåva:
  • 23001
  • Mått:
  • 155x9x235 mm.
  • Vikt:
  • 242 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 27. januari 2025
Förlängd ångerrätt till 31. januari 2025
  •  

    Kan ej levereras före jul.
    Köp nu och skriv ut ett presentkort

Beskrivning av Inverse Linear Problems on Hilbert Space and their Krylov Solvability

This book presents a thorough discussion of the theory of abstract inverse linear problems on Hilbert space. Given an unknown vector f in a Hilbert space H, a linear operator A acting on H, and a vector g in H satisfying Af=g, one is interested in approximating f by finite linear combinations of g, Ag, A2g, A3g, ¿ The closed subspace generated by the latter vectors is called the Krylov subspace of H generated by g and A. The possibility of solving this inverse problem by means of projection methods on the Krylov subspace is the main focus of this text.
After giving a broad introduction to the subject, examples and counterexamples of Krylov-solvable and non-solvable inverse problems are provided, together with results on uniqueness of solutions, classes of operators inducing Krylov-solvable inverse problems, and the behaviour of Krylov subspaces under small perturbations. An appendix collects material on weaker convergence phenomena in general projection methods.
This subject of this book lies at the boundary of functional analysis/operator theory and numerical analysis/approximation theory and will be of interest to graduate students and researchers in any of these fields.

Användarnas betyg av Inverse Linear Problems on Hilbert Space and their Krylov Solvability



Hitta liknande böcker
Boken Inverse Linear Problems on Hilbert Space and their Krylov Solvability finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.