Marknadens största urval
Snabb leverans

Nonlinear Predictive Control Using Wiener Models

Om Nonlinear Predictive Control Using Wiener Models

This book presents computationally efficient MPC solutions. The classical model predictive control (MPC) approach to control dynamical systems described by the Wiener model uses an inverse static block to cancel the influence of process nonlinearity. Unfortunately, the model's structure is limited, and it gives poor control quality in the case of an imperfect model and disturbances. An alternative is to use the computationally demanding MPC scheme with on-line nonlinear optimisation repeated at each sampling instant. A linear approximation of the Wiener model or the predicted trajectory is found on-line. As a result, quadratic optimisation tasks are obtained. Furthermore, parameterisation using Laguerre functions is possible to reduce the number of decision variables. Simulation results for ten benchmark processes show that the discussed MPC algorithms lead to excellent control quality. For a neutralisation reactor and a fuel cell, essential advantages ofneural Wiener models are demonstrated.

Visa mer
  • Språk:
  • Engelska
  • ISBN:
  • 9783030838171
  • Format:
  • Häftad
  • Sidor:
  • 368
  • Utgiven:
  • 23. september 2022
  • Utgåva:
  • 22001
  • Mått:
  • 155x20x235 mm.
  • Vikt:
  • 557 g.
  Fri leverans
Leveranstid: 2-4 veckor
Förväntad leverans: 17. december 2024

Beskrivning av Nonlinear Predictive Control Using Wiener Models

This book presents computationally efficient MPC solutions. The classical model predictive control (MPC) approach to control dynamical systems described by the Wiener model uses an inverse static block to cancel the influence of process nonlinearity. Unfortunately, the model's structure is limited, and it gives poor control quality in the case of an imperfect model and disturbances. An alternative is to use the computationally demanding MPC scheme with on-line nonlinear optimisation repeated at each sampling instant.
A linear approximation of the Wiener model or the predicted trajectory is found on-line. As a result, quadratic optimisation tasks are obtained. Furthermore, parameterisation using Laguerre functions is possible to reduce the number of decision variables. Simulation results for ten benchmark processes show that the discussed MPC algorithms lead to excellent control quality. For a neutralisation reactor and a fuel cell, essential advantages ofneural Wiener models are demonstrated.

Användarnas betyg av Nonlinear Predictive Control Using Wiener Models



Hitta liknande böcker
Boken Nonlinear Predictive Control Using Wiener Models finns i följande kategorier:

Gör som tusentals andra bokälskare

Prenumerera på vårt nyhetsbrev för att få fantastiska erbjudanden och inspiration för din nästa läsning.